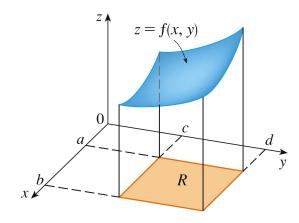
Lesson 23. Double Integrals Over General Regions

1 In the previous lesson: rectangles



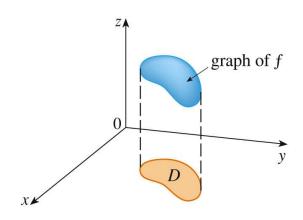
• Rectangle
$$R = [a, b] \times [c, d]$$

= $\{(x, y) | a \le x \le b, c \le y \le d\}$

$$\iint_{R} f(x, y) dA = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

$$= \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy$$

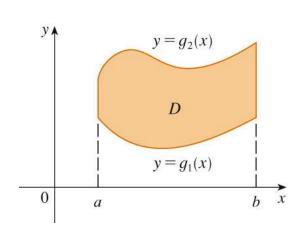
2 General regions

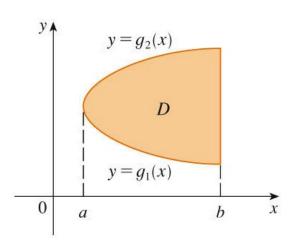


- How about general regions *D*?
- Intuition: if $f(x, y) \ge 0$, double integral still represents volume of solid between D and graph of f
- We focus on two types of regions
- **Type I regions**: lies between the graphs of two continuous functions of x, that is:

$$D = \{(x, y) \mid a \le x \le b, \ g_1(x) \le y \le g_2(x)\}$$

o Examples:



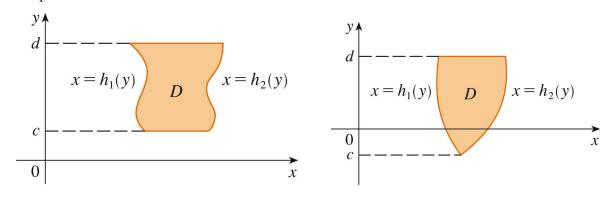


 \circ If *D* is a type I region (and *f* is continuous on *D*), then

- In the inner integral, x is regarded a constant in f(x, y) and the limits of integration
- **Type II regions**: lies between the graphs of two continuous functions of *y*, that is:

$$D = \{(x, y) \mid c \le x \le d, \ h_1(y) \le x \le h_2(x)\}$$

• Examples:



 \circ If *D* is a type II region (and *f* is continuous on *D*), then

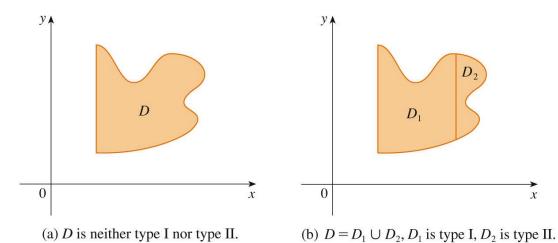
• In the inner integral, y is regarded a constant in f(x, y) and the limits of integration

Example 1. Find $\iint_D (x - y) \, dy \, dx$, where $D = \{(x, y) | 0 \le x \le 1, 2x \le y \le 2\}$.

ple 2. Fin						
alo 2 Evr	pluoto # (2	2	o Die the trieng	dar ragion with v	vartices (0, 0)	2.0) (1
le 3. Eva	aluate $\iint_D (2-1)^{-1}$	(2x - y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ole 3. Eva	aluate $\iint_D (2-1)$	2x - y) dA , when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ble 3. Eva	aluate $\iint_D (2-2)$	2x - y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ole 3. Eva	aluate $\iint_D (2-1)$	2x - y) dA, when	$re\ D$ is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ole 3. Eva	aluate $\iint_D (2-1)$	2x - y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ole 3. Eva	aluate $\iint_D (2-1)^{-1}$	2x – y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ole 3. Eva	aluate $\iint_D (2-1)$	2x - y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ole 3. Eva	aluate $\iint_D (2-1)$	2x - y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ole 3. Eva	aluate $\iint_D (2-1)^{-1}$	2x – y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,
ple 3. Eva	aluate $\iint_D (2-1)^{-1}$	2x – y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), ((2,0), (1,
ple 3. Eva	aluate $\iint_D (2-1)^{-1}$	2x – y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,1
ple 3. Eva	aluate $\iint_D (2-2\pi)$	2x – y) dA, when	re D is the triangu	ılar region with v	rertices (0,0), (2,0), (1,
ple 3. Eva	aluate $\iint_D (2-1)^{-1}$	2x - y) dA, when	e D is the triangu	llar region with v	rertices (0,0), (2,0), (1,
ole 3. Eva	aluate $\iint_D (2-2\pi)$	2x – y) dA, when	re D is the triangu	llar region with v	rertices (0,0), (2,0), (1,
ole 3. Eva	aluate $\iint_D (2-1)^{-1}$	2x – y) dA, when	re D is the triangu	llar region with v	rertices (0,0), (2,0), (1,
ple 3. Eva	aluate $\iint_D (2-1)^{-1}$	2x – y) dA, when	re D is the triangu	llar region with v	rertices (0,0), (2,0), (1,
ple 3. Eva	aluate $\iint_D (2-2\pi)$	2x – y) dA, when	re D is the triangu	llar region with v	rertices (0,0), (2,0), (1,

• If $D = D_1 \cup D_2$, where D_1 and D_2 don't overlap except perhaps on their boundaries, then

$$\iint_D f(x,y) \, dA = \iint_{D_1} f(x,y) \, dA + \iint_{D_2} f(x,y) \, dA$$



Example 4. Write $\iint_D (2-2x-y) dA$ as the sum of 2 type I region iterated integrals, where *D* is the triangular region with vertices (0,0), (2,0), and (1,1).

mple 6. Cons	ider the double	e integral \iint_{D}	f(x, y) dA wh	ere D is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_D .	f(x, y) dA which orders of int	ere <i>D</i> is enclo	osed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_{D} .	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral $∫_D$ egral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_D . gral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_D egral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral $∫_D$. egral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_D . egral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_D gral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_D . egral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the doublo	e integral ∬ _{D.} egral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_D . egral using bot	f(x, y) dA when orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$
mple 6. Cons ble integral as	ider the double an iterated inte	e integral \iint_D . egral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}$. Se
mple 6. Cons ble integral as	ider the double	e integral ∬ _{D.} egral using bot	f(x, y) dA which orders of int	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}$. Se
mple 6. Cons ble integral as	ider the double	e integral \iint_D . egral using bot	f(x, y) dA when orders of interesting $f(x, y) dA$	ere <i>D</i> is enclo	psed by $x = 0$,	$x = \sqrt{1 - y^2}. \text{ Se}$

